Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 58(24): 3048-3063.e6, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38056452

RESUMEN

Tissue homeostasis relies on rewiring of stem cell transcriptional programs into those of differentiated cells. Here, we investigate changes in chromatin occurring in a bipotent adult stem cells. Combining mapping of chromatin-associated factors with statistical modeling, we identify genome-wide transitions during differentiation in the adult Drosophila intestinal stem cell (ISC) lineage. Active, stem-cell-enriched genes transition to a repressive heterochromatin protein-1-enriched state more prominently in enteroendocrine cells (EEs) than in enterocytes (ECs), in which the histone H1-enriched Black state is preeminent. In contrast, terminal differentiation genes associated with metabolic functions follow a common path from a repressive, primed, histone H1-enriched Black state in ISCs to active chromatin states in EE and EC cells. Furthermore, we find that lineage priming has an important function in adult ISCs, and we identify histone H1 as a mediator of this process. These data define underlying principles of chromatin changes during adult multipotent stem cell differentiation.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Histonas/metabolismo , Cromatina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Linaje de la Célula , Intestinos , Diferenciación Celular/genética
2.
Cell Rep ; 42(12): 113485, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38032794

RESUMEN

During development and aging, genome mutation leading to loss of heterozygosity (LOH) can uncover recessive phenotypes within tissue compartments. This phenomenon occurs in normal human tissues and is prevalent in pathological genetic conditions and cancers. While studies in yeast have defined DNA repair mechanisms that can promote LOH, the predominant pathways and environmental triggers in somatic tissues of multicellular organisms are not well understood. Here, we investigate mechanisms underlying LOH in intestinal stem cells in Drosophila. Infection with the pathogenic bacteria, Erwinia carotovora carotovora 15, but not Pseudomonas entomophila, increases LOH frequency. Using whole genome sequencing of somatic LOH events, we demonstrate that they arise primarily via mitotic recombination. Molecular features and genetic evidence argue against a break-induced replication mechanism and instead support cross-over via double Holliday junction-based repair. This study provides a mechanistic understanding of mitotic recombination, an important mediator of LOH, and its effects on stem cells in vivo.


Asunto(s)
Drosophila , Recombinación Genética , Animales , Humanos , Drosophila/genética , Recombinación Genética/genética , Reparación del ADN , Pérdida de Heterocigocidad , Saccharomyces cerevisiae/genética , Células Madre
3.
EMBO J ; 40(9): e106388, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33634906

RESUMEN

Transposable elements (TEs) play a significant role in evolution, contributing to genetic variation. However, TE mobilization in somatic cells is not well understood. Here, we address the prevalence of transposition in a somatic tissue, exploiting the Drosophila midgut as a model. Using whole-genome sequencing of in vivo clonally expanded gut tissue, we have mapped hundreds of high-confidence somatic TE integration sites genome-wide. We show that somatic retrotransposon insertions are associated with inactivation of the tumor suppressor Notch, likely contributing to neoplasia formation. Moreover, applying Oxford Nanopore long-read sequencing technology we provide evidence for tissue-specific differences in retrotransposition. Comparing somatic TE insertional activity with transcriptomic and small RNA sequencing data, we demonstrate that transposon mobility cannot be simply predicted by whole tissue TE expression levels or by small RNA pathway activity. Finally, we reveal that somatic TE insertions in the adult fly intestine are enriched in genic regions and in transcriptionally active chromatin. Together, our findings provide clear evidence of ongoing somatic transposition in Drosophila and delineate previously unknown features underlying somatic TE mobility in vivo.


Asunto(s)
Elementos Transponibles de ADN , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Neoplasias Intestinales/genética , Receptores Notch/genética , Animales , Evolución Clonal , Femenino , Perfilación de la Expresión Génica , Silenciador del Gen , Masculino , Especificidad de Órganos , Recombinación Genética , Análisis de Secuencia de ARN/métodos , Secuenciación Completa del Genoma
4.
Dev Cell ; 49(4): 556-573.e6, 2019 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-31112698

RESUMEN

Chromatin remodeling accompanies differentiation, however, its role in self-renewal is less well understood. We report that in Drosophila, the chromatin remodeler Kismet/CHD7/CHD8 limits intestinal stem cell (ISC) number and proliferation without affecting differentiation. Stem-cell-specific whole-genome profiling of Kismet revealed its enrichment at transcriptionally active regions bound by RNA polymerase II and Brahma, its recruitment to the transcription start site of activated genes and developmental enhancers and its depletion from regions bound by Polycomb, Histone H1, and heterochromatin Protein 1. We demonstrate that the Trithorax-related/MLL3/4 chromatin modifier regulates ISC proliferation, colocalizes extensively with Kismet throughout the ISC genome, and co-regulates genes in ISCs, including Cbl, a negative regulator of Epidermal Growth Factor Receptor (EGFR). Loss of kismet or trr leads to elevated levels of EGFR protein and signaling, thereby promoting ISC self-renewal. We propose that Kismet with Trr establishes a chromatin state that limits EGFR proliferative signaling, preventing tumor-like stem cell overgrowths.


Asunto(s)
Cromatina/metabolismo , ADN Helicasas/metabolismo , Proteínas de Drosophila/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas de Homeodominio/metabolismo , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Ensamble y Desensamble de Cromatina/fisiología , ADN Helicasas/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Receptores ErbB/metabolismo , N-Metiltransferasa de Histona-Lisina/fisiología , Histonas/metabolismo , Proteínas de Homeodominio/fisiología , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Receptores de Péptidos de Invertebrados/metabolismo , Transducción de Señal/fisiología , Células Madre/metabolismo , Factores de Transcripción/metabolismo
5.
PLoS Genet ; 14(11): e1007773, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30452449

RESUMEN

Precise regulation of stem cell self-renewal and differentiation properties is essential for tissue homeostasis. Using the adult Drosophila intestine to study molecular mechanisms controlling stem cell properties, we identify the gene split-ends (spen) in a genetic screen as a novel regulator of intestinal stem cell fate (ISC). Spen family genes encode conserved RNA recognition motif-containing proteins that are reported to have roles in RNA splicing and transcriptional regulation. We demonstrate that spen acts at multiple points in the ISC lineage with an ISC-intrinsic function in controlling early commitment events of the stem cells and functions in terminally differentiated cells to further limit the proliferation of ISCs. Using two-color cell sorting of stem cells and their daughters, we characterize spen-dependent changes in RNA abundance and exon usage and find potential key regulators downstream of spen. Our work identifies spen as an important regulator of adult stem cells in the Drosophila intestine, provides new insight to Spen-family protein functions, and may also shed light on Spen's mode of action in other developmental contexts.


Asunto(s)
Células Madre Adultas/citología , Autorrenovación de las Células/genética , Autorrenovación de las Células/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/fisiología , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Células Madre Adultas/metabolismo , Animales , Animales Modificados Genéticamente , Recuento de Células , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Proteínas de Homeodominio/antagonistas & inhibidores , Intestinos/citología , Masculino , Modelos Biológicos , Mutación , Proteínas Nucleares/antagonistas & inhibidores , Interferencia de ARN , Proteínas de Unión al ARN , Receptores Notch/metabolismo , Transducción de Señal
6.
Dev Cell ; 45(4): 496-511.e6, 2018 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-29787710

RESUMEN

Successive cell divisions during embryonic cleavage create increasingly smaller cells, so intracellular structures must adapt accordingly. Mitotic spindle size correlates with cell size, but the mechanisms for this scaling remain unclear. Using live cell imaging, we analyzed spindle scaling during embryo cleavage in the nematode Caenorhabditis elegans and sea urchin Paracentrotus lividus. We reveal a common scaling mechanism, where the growth rate of spindle microtubules scales with cell volume, which explains spindle shortening. Spindle assembly timing is, however, constant throughout successive divisions. Analyses in silico suggest that controlling the microtubule growth rate is sufficient to scale spindle length and maintain a constant assembly timing. We tested our in silico predictions to demonstrate that modulating cell volume or microtubule growth rate in vivo induces a proportional spindle size change. Our results suggest that scalability of the microtubule growth rate when cell size varies adapts spindle length to cell volume.


Asunto(s)
Caenorhabditis elegans/embriología , Tamaño de la Célula , Embrión no Mamífero/fisiología , Microtúbulos/fisiología , Paracentrotus/embriología , Huso Acromático/fisiología , Animales , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Portadoras/metabolismo , Embrión no Mamífero/citología , Paracentrotus/fisiología
7.
Nat Commun ; 8(1): 1499, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29133801

RESUMEN

During cell division, spindle microtubules ensure an equal repartition of chromosomes between the two daughter cells. While the kinetochore-dependent mechanisms that drive mitotic chromosome segregation are well understood, in oocytes of most species atypical spindles assembled in absence of centrosomes entail poorly understood mechanisms of chromosome segregation. In particular, the structure(s) responsible for force generation during meiotic chromosome separation in oocytes is unclear. Using quantitative light microscopy, electron tomography, laser-mediated ablation, and genetic perturbations in the Caenorhabditis elegans oocyte, we studied the mechanism of chromosome segregation in meiosis. We find spindle poles are largely dispensable, and in fact act as brakes for chromosome segregation. Instead, our results suggest that CLS-2-dependent microtubules of the meiotic central spindle, located between the segregating chromosomes and aligned along the axis of segregation, are essential. Our results support a model in which inter-chromosomal microtubules of the central spindle push chromosomes apart during meiotic anaphase in oocytes.


Asunto(s)
Caenorhabditis elegans/genética , Segregación Cromosómica , Microtúbulos , Oocitos/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Dineínas/metabolismo , Femenino , Cinetocoros , Proteínas Asociadas a Microtúbulos/metabolismo , Huso Acromático
8.
EMBO J ; 36(13): 1928-1945, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28533229

RESUMEN

How terminal cell fates are specified in dynamically renewing adult tissues is not well understood. Here we explore terminal cell fate establishment during homeostasis using the enteroendocrine cells (EEs) of the adult Drosophila midgut as a paradigm. Our data argue against the existence of local feedback signals, and we identify Numb as an intrinsic regulator of EE fate. Our data further indicate that Numb, with alpha-adaptin, acts upstream or in parallel of known regulators of EE fate to limit Notch signaling, thereby facilitating EE fate acquisition. We find that Numb is regulated in part through its asymmetric and symmetric distribution during stem cell divisions; however, its de novo synthesis is also required during the differentiation of the EE cell. Thus, this work identifies Numb as a crucial factor for cell fate choice in the adult Drosophila intestine. Furthermore, our findings demonstrate that cell-intrinsic control mechanisms of terminal cell fate acquisition can result in a balanced tissue-wide production of terminally differentiated cell types.


Asunto(s)
Diferenciación Celular , Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Células Enteroendocrinas/fisiología , Regulación de la Expresión Génica , Hormonas Juveniles/metabolismo , Animales , Intestinos/fisiología , Transducción de Señal
9.
Development ; 144(9): 1674-1686, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28289130

RESUMEN

In most species, oocytes lack centrosomes. Accurate meiotic spindle assembly and chromosome segregation - essential to prevent miscarriage or developmental defects - thus occur through atypical mechanisms that are not well characterized. Using quantitative in vitro and in vivo functional assays in the C. elegans oocyte, we provide novel evidence that the kinesin-13 KLP-7 promotes destabilization of the whole cellular microtubule network. By counteracting ectopic microtubule assembly and disorganization of the microtubule network, this function is strictly required for spindle organization, chromosome segregation and cytokinesis in meiotic cells. Strikingly, when centrosome activity was experimentally reduced, the absence of KLP-7 or the mammalian kinesin-13 protein MCAK (KIF2C) also resulted in ectopic microtubule asters during mitosis in C. elegans zygotes or HeLa cells, respectively. Our results highlight the general function of kinesin-13 microtubule depolymerases in preventing ectopic, spontaneous microtubule assembly when centrosome activity is defective or absent, which would otherwise lead to spindle microtubule disorganization and aneuploidy.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Segregación Cromosómica , Citocinesis , Cinesinas/metabolismo , Microtúbulos/metabolismo , Oocitos/citología , Oocitos/metabolismo , Células HeLa , Humanos , Imagenología Tridimensional , Meiosis , Huso Acromático/metabolismo
10.
Dev Cell ; 38(5): 463-77, 2016 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-27623381

RESUMEN

During M-phase entry in metazoans with open mitosis, the concerted action of mitotic kinases disassembles nuclei and promotes assembly of kinetochores-the primary microtubule attachment sites on chromosomes. At M-phase exit, these major changes in cellular architecture must be reversed. Here, we show that the conserved kinetochore-localized nucleoporin MEL-28/ELYS docks the catalytic subunit of protein phosphatase 1 (PP1c) to direct kinetochore disassembly-dependent chromosome segregation during oocyte meiosis I and nuclear assembly during the transition from M phase to interphase. During oocyte meiosis I, MEL-28-PP1c disassembles kinetochores in a timely manner to promote elongation of the acentrosomal spindles that segregate homologous chromosomes. During nuclear assembly, MEL-28 recruits PP1c to the periphery of decondensed chromatin, where it directs formation of a functional nuclear compartment. Thus, a pool of phosphatase activity associated with a kinetochore-localized nucleoporin contributes to two key events that occur during M-phase exit in metazoans: kinetochore disassembly and nuclear reassembly.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Meiosis/genética , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Receptores de Neuropéptido Y/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Segregación Cromosómica/genética , Proteínas de Unión al ADN , Humanos , Cinetocoros/metabolismo , Membrana Nuclear/genética , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Nucleares/genética , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Mapas de Interacción de Proteínas/genética , Receptores de Neuropéptido Y/genética
12.
Nat Cell Biol ; 17(5): 697-705, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25866924

RESUMEN

A critical structure poised to coordinate chromosome segregation with division plane specification is the central spindle that forms between separating chromosomes after anaphase onset. The central spindle acts as a signalling centre that concentrates proteins essential for division plane specification and contractile ring constriction. However, the molecular mechanisms that control the initial stages of central spindle assembly remain elusive. Using Caenorhabditis elegans zygotes, we found that the microtubule-bundling protein SPD-1(PRC1) and the motor ZEN-4(MKLP-1) are required for proper central spindle structure during its elongation. In contrast, we found that the kinetochore controls the initiation of central spindle assembly. Specifically, central spindle microtubule assembly is dependent on kinetochore recruitment of the scaffold protein KNL-1, as well as downstream partners BUB-1, HCP-1/2(CENP-F) and CLS-2(CLASP); and is negatively regulated by kinetochore-associated protein phosphatase 1 activity. This in turn promotes central spindle localization of CLS-2(CLASP) and initial central spindle microtubule assembly through its microtubule polymerase activity. Together, our results reveal an unexpected role for a conserved kinetochore protein network in coupling two critical events of cell division: chromosome segregation and cytokinesis.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , División Celular , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Huso Acromático/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Citocinesis , Cinesinas/genética , Cinesinas/metabolismo , Microscopía Fluorescente , Microscopía por Video , Proteínas Asociadas a Microtúbulos/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , Transducción de Señal , Huso Acromático/genética , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...